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ABSTRACT 

Hypotheses concerning the observed decline in recruitment and abundance of American eels, 
Anguilla americana, in Lake Ontario and the upper St. Lawrence River are summarized.  
These hypotheses were presented in a questionnaire to managers and biologists with 
knowledge of eels for scoring with regard to their importance in determining eel population 
dynamics.  As well, the hypotheses were used to construct a life history model based on 
disaggregated Beverton-Holt recruitment dynamics.  The population is modelled as six sub-
stocks with panmictic reproduction and unique parameter sets and recruitment dynamics 
within each sub-stock. 

Eleven responses were received to the questionnaire.  Habitat reduction ranked as most 
important influence on recruitment and abundance, followed by mortality associated with 
downstream passage at dams and overfishing on resident eels.  The impacts of 
microcontaminants and impacts in the oceanic environment ranked lower and mortality 
associated with infestations of swimbladder nematode was ranked very low.  None of those 
polled offered an opinion on the importance of harvest of sargassum weed in the Sargasso 
Sea as an influence on recruitment and abundance.  

Data from which to estimate parameters are sparse, and in some cases nonexistent.  The 
modeling approach was limited to assessing the influence on model outcomes of varying the 
parameters within plausible ranges based on literature reports, consultation with experts and 
life history theory.  The impact of varying individual parameters was examined in two ways: 
by comparing single trials of the model with one parameter varied from a base case, and 
comparing outcomes; and by Monte Carlo simulations which compared the influence of 
individual parameters by computing rank correlations of random values of the parameters 
with outcomes over a thousand trials of the model.  Total eel population capacity was 
allowed to vary in some runs, and the age structure of the Lake Ontario – upper St. 
Lawrence sub-stock was run with assumed residence of 12 or 17 years before onset of 
maturity. 

Based on sensitivity analyses the top five plausible impacts on the entire population in terms 
of model sensitivity, from greatest to least influential, are oceanic effects on early life stages, 
cumulative effects of fishing (and other anthropogenic mortality) on resident (juvenile) eels, 
dam passage effects, habitat impacts throughout the entire range, habitat impacts in the Lake 
Ontario/upper St. Lawrence sub-stock.  The five most plausible impacts on the Lake 
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Ontario/upper St. Lawrence River contribution to total reproduction, from greatest to least 
influential, in terms of model sensitivity are cumulative effects of fishing (and other 
anthropogenic mortality) on resident eels, oceanic effects, dam passage effects, habitat 
impacts in the Lake Ontario/upper St. Lawrence sub-stock and habitat impacts throughout 
the entire range. 

We conclude that reduction of fishing pressure on resident eels and mitigation of upstream 
and downstream passage impacts from dams would likely have a positive effect on the Lake 
Ontario/upper St. Lawrence sub-stock. 

We identify areas for further research that would significantly decrease the uncertainty 
attached to models characterizing American eel population dynamics. 
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1.0 INTRODUCTION AND OBJECTIVES 

Numerous scientific reports (e.g., Castonguay et al., 1994a,b; Marcogliese et al., 1997; 
Casselman et al., 1997a,b) and resource agencies (e.g., ASMFC, 2000), suggest that the 
American eel, Anguilla rostrata, is experiencing a rapid decline in abundance in the Lake 
Ontario/St. Lawrence River (LO-SLR) ecosystem.  Haro et al. (2000) present evidence for a 
decline in the population of the American eel from several widely distributed regions of North 
America from 1984 to 1995.  Reductions in the number of juvenile (yellow-phase) eels 
ascending the eel ladder at the R.H. Saunders dam on the St. Lawrence River (Casselman et 
al., 1997a) was the earliest indicator of a possible precipitous decline in eel abundance.  
Between 1982 and 1995, the number of juveniles passed at the ladder during the peak 
migration period dropped from over 25,000 per day to less than 1,000 per day.  Marcogliese 
et al. (1997) provided evidence that the substantial declines in recruitment to the Lake 
Ontario/upper St. Lawrence River system since 1982 have been reflected in the catch per unit 
effort (CUE) in the commercial juvenile eel fishery in the Ontario waters of Lake Ontario.  In 
the Quebec silver eel fishery, catches steadily declined through the 1990s despite a substantial 
increase in the price offered to eel fishers (Casselman, 1997; Caron and Verreault, 1997).  A 
significant decline in abundance is also evident in the silver-phase eel commercial weir fishery 
dataset for the St. Lawrence River estuary (Haro, 2000).  A similar decline in catch, in spite 
of a five-fold increase in price, also occurred in the Atlantic States in the mid-1990s (Jessop, 
1997; Richkus and Whalen, 1999).    

A number of factors have been suggested as the cause,  or causes,  of this decline in 
recruitment to, and the abundance of,  the Lake Ontario-upper St. Lawrence River sub-stock, 
e.g.: 

• habitat loss/fragmentation due to blockage and/or impedance of upstream 
passage; 

• turbine mortality on silver eels during downstream passage; 
• overexploitation of multiple life stages, e.g., glass eels/elvers, yellow-phase eels, 

silver-phase eels; 
• microcontaminants and their effects on survival and reproduction; 
• oceanic environmental change;  
• pre-spawning mortality associated with swim bladder worm infections; and 
• the unregulated commercial harvest of Sargassum (Sargassum spp.) in the 

spawning zone. 



American Eel White Paper 
 

 
Beak International Incorporated 
Ref.:  21852.10  1.2 

One of the key issues involved in determining the effects of these factors is the high degree of 
uncertainty (due to a lack of information associated with the unique and complex life history 
of A. rostrata) with respect to age structure, growth, life stage-specific mortality, fecundity, 
density-dependence and other important data needed to draw scientifically-defensible 
conclusions (ASMFC, 2000).  This large uncertainty is also problematic in any attempt to 
quantify, or estimate the relative effectiveness of potential mitigative measures that might 
help stimulate a recovery of recruitment to the Lake Ontario-upper St.  Lawrence River (LO-
SLR) ecosystem.  At present,  we are not aware of any attempt to determine the relative 
population-level and sub-stock-level effects associated with each of these potential causes of 
eel decline in the LO-SLR system.   

The Lake Ontario Committee (LOC) of the Great Lakes Fishery Commission (GLFC) has 
become concerned with the current status of American eel in Lake Ontario and the upper St. 
Lawrence River.  This concern has lead the LOC/GLFC to assign the task of development of 
an adaptive modeling approach to address the possible reasons for the observed decline in 
this part of the range of A. rostrata.  The initial objective of this effort is the development of 
a model that employs established ecological theory to describe the life history and 
population/sub-stock dynamics of A. rostrata, with explicit representation of the Lake 
Ontario-upper St. Lawrence River sub-stock.  Other objectives are: 

• to conduct Monte Carlo simulations to analyze model sensitivity; 

• to use the results of these sensitivity analyses to identify critical data gaps and 
research priorities; and 

• attempt to rank the potential causes of the decline,  and potential mitigative 
measures. 

This discussion paper includes background information describing the life history of 
American eel and detailing the suspected causes of the decline in the LO-SLR sub-stock.  It 
also includes the development and implementation of a life-history-based population 
dynamics model for American eel,  and the use of sensitivity analyses to examine data gaps 
and rank the sensitivity of various model configurations to factors which may be affecting the 
population and the LO-SLR sub-stock.  These rankings are interpreted and used to identify 
data gaps and research priorities for management.  
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2.0 BACKGROUND 

2.1 Life History of American Eel 

The panmictic nature of American eel life history implies that factors affecting any life stage,  
in any of the geographic areas of the range,  have the potential to affect the abundance of 
other life stages throughout the range of the population.  Depending on the nature of the 
factors,  the effect(s) may be very different in various portions of the range.  Some 
knowledge of American eel life history is required to develop a life history-based model of 
the population;  therefore, the following sections consist of a brief review of the life history of 
A. rostrata with an emphasis on the Lake Ontario/St. Lawrence River (LO-SLR) component 
of the population. 

2.1.1 General Life History 

The life history of A. rostrata encompasses freshwater, estuarine and oceanic environments.  
The species is catadromous, i.e., spawning in the marine environment and migrating into 
freshwater habitats to feed and mature, before migrating back to sea as mature adults to 
spawn.  American eels spawn in the vicinity of the Sargasso Sea, with transport and 
distribution of early life stages to coastal waters from northern South America to Greenland.  
Juveniles tend to migrate considerable distances up rivers to become long-term residents of 
lacustrine and riverine habitats.  As juveniles become mature, they begin to metamorphose 
into adult eels which move downstream to the sea as they migrate to the spawning habitat in 
the Sargasso sea. 

The fisheries literature related to A. rostrata employs a classification of life stages that is only 
loosely related to ontogeny.  The stages identified by fishers and fisheries workers do have 
the virtue of generally corresponding to changes in habitat use and migratory behaviour. We 
have therefore employed the common usage in naming stages. 

2.1.2 Oceanic Life Stages 

Life stages which occur in the oceanic environment include silver-phase migrants, spawners, 
eggs, leptocephalus larvae and glass eels. 
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2.1.2.1 Silver-phase (= Bronze-phase) Eels 

Maturing silver-phase A. rostrata enter the Atlantic Ocean after completing downstream 
migrations from freshwater lakes and rivers, and through estuaries.  Metamorphosis from the 
yellow-phase begins in freshwater and results in rapid morphological and physiological 
changes which are widely thought to better adapt silver-phase eels to swimming and survival 
during the oceanic, adult phase of the life cycle (Kleckner, 1980; Pankhurst, 1982).  The 
changes include: 

• colour change to a metallic silver or bronze sheen dorso-laterally and white or 
cream ventrally (Parkhurst and Lythgoe, 1982); 

• accumulation of body fat content (Sorensen and Pankhurst, 1988);  

• thickening of the integument (Sorensen and Pankhurst, 1988); 

• enlargement of eyes and changes in visual pigments in the retina (Pankhurst, 
1982); 

• enlargement of swim bladder rete (Kleckner and Krueger, 1981); 

• degeneration of the digestive tract (Parkhurst and Sorensen, 1984); and 

• beginning of gamete maturation (Krueger and Oliveira, 1997). 

The oceanic portion of adult migration is poorly understood.  Only a few specimens have 
been collected in offshore waters, e.g., Wenner (1973). 

Tesch (1977, 1991) synthesized available data from a variety of sources to contend that the 
spawning zone is located in the Sargasso Sea south of Bermuda and north of the Bahamas 
(Facey et al., 1987).  Distance traveled to reach the spawning zone varies substantially over 
the range of A. rostrata.  Silver eels from the western end of Lake Ontario must migrate well 
over 6000 km to reach the spawning zone whereas eels outmigrating from rivers in Georgia 
are required to migrate only about 1300 km.  Spawning is thought to occur between February 
and April in the upper 300 m of the spawning zone (Kleckner et al., 1983; McCleave and 
Kleckner, 1985).  It is very probable that the timing of the onset of the migration varies with 
distance from the spawning zone so that eels from Lake Ontario or Lake Champlain begin to 
outmigrate in June and the silver eel outmigration in the Delaware River begins in late August 
or September.  This timing is thought to synchronize the arrival of all components of the 
spawning population at the spawning zone (Helfman et al., 1987). 
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The fecundity of A. rostrata varies with body size (e.g., Wenner and Musick, 1974), and 
female body size varies such that the largest (and oldest) silver-phase females are found in the 
St. Lawrence River estuary and smaller (younger) silver-phase females are found in Georgia  
(Helfman et al., 1987).  Krueger and Oliveira (1997) suggest that this size trend is related to 
the minimum size required to complete the seaward migration to the Sargasso.  Fecundity per 
female is thought to range from 0.4 to 8.5 million eggs (Facey et al., 1987),  although 
Krueger and Oliveira (1999) report fecundity as high as almost 20 million eggs.  A. rostrata is 
assumed to be semelparous, and eels from throughout the range are assumed to mix 
randomly during spawning (Avise et al., 1986, 1990). 

2.1.2.2 Eggs and Leptocephalus (Larval) Stages 

Eggs are small, about 1.1 mm (Tesch, 1991) and probably hatch within a week of deposition.  
McCleave et al. (1987) suggest that hatching peaks in February and may continue into April.  
The larval stage is termed the leptocephalus and is transported by a variety of oceanic 
currents to the coastal waters of the range of A. rostrata (see Kleckner and McCleave, 1982; 
Power and McCleave, 1983).  The duration of this stage is thought to be up to one year 
(Facey et al., 1987) but may last longer (Fahay, 1978).  Drifting in the Gulf Stream is 
probably the means by which larvae reach Canadian coastal waters and the Gulf of St. 
Lawrence and metamorphose to the glass eel and elver stages.  This metamorphosis 
essentially transforms the eel from a pelagic animal to a benthic animal.  This process is 
thought to occur as the animals enter coastal waters at 8 to 12+ months after spawning. 

Mortality rates for the larval stage are unknown; however, evidence from other ocean 
spawning species with long-term pelagic larvae suggests that mortality through this stage is 
very high (Bond, 1979).  No commercial or recreational fishery exists for the leptocephalus 
stage; however, the potential effect of commercial harvesting of Sargasso weed in the 
Sargasso Sea is presently unknown. 

2.1.2.3 Glass Eels/Elvers 

The commonly used terminology of eel life history differentiates juvenile stages based on 
superficial appearance for which there is no real biological basis.  Glass eels are unpigmented 
animals which have metamorphosed into the general morphology of juvenile eels, but without 
the dark pigmentation of elvers or yellow-phase juveniles.  The glass eel is a short transitional 
phase during which active inshore and upstream migration begins. As a result,  glass eels 
occur in both coastal and estuarine habitats. 
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Most glass eels and elvers reach estuarine waters of New England in the late winter/spring 
approximately one year after spawning (Facey et al., 1987).  Historically,  this timing was 
probably similar for most glass eels and elvers entering the estuaries of the northern parts of 
the range, i.e., Nova Scotia, the Gulf of St. Lawrence, Newfoundland, Labrador, Greenland.  
Glass eels, partially pigmented elvers, and fully pigmented elvers begin to actively move 
upstream as they become highly rheotactic. 

2.1.3 Estuarine and Freshwater Life Stages 

These life stages of A. rostrata include glass eels/elvers, a transitional phase between the 
oceanic and freshwater/estuarine environments, yellow-phase or juvenile eels, and maturing, 
i.e.,  silver-phase,  eels but only during the freshwater/estuarine portion of the downstream, 
seaward migration. 

2.1.3.1 Glass Eels/Elvers 

The glass eel/elver stages are of short but variable duration,  likely about three to twelve 
months, much of which is spent migrating upstream through the marine and freshwater tidal 
zone of estuaries (e.g., Haro and Krueger, 1991; Jessop, 1998).  Glass eels/elvers may 
migrate upstream using flood tides to travel considerable distances into freshwater 
environments.  Elvers entering the Gulf of St. Lawrence probably use a variety of 
mechanisms to move upstream.  

2.1.3.2 Juveniles (Yellow-phase Eels) 

There does not appear to be a clear distinction between the late elver stage and early juvenile 
(yellow-phase) stage.  Eels larger than about 150 mm are considered to be juvenile or yellow-
phase eels.  These juveniles may continue to actively migrate upstream for many years, or 
may establish home territories in estuaries and brackish tidal zones of rivers.  Active upstream 
migrants may move considerable distances over very long periods. A juvenile eel ladder was 
installed in an ice sluice at the Moses-Saunders dam near Cornwall, Ontario, and began 
operation in 1974 (Liew, 1982). Juveniles passing the eel ladder are considered to be 3- to 8-
years-old (J. Casselman, Glenora Fisheries Research Station, Picton, ON, pers. comm.). 

The standardized peak juvenile migration period at the Moses-Saunders juvenile eel ladder is 
31 days in duration and generally occurs in July/August.  The number of eels passing the 
ladder during this peak period was demonstrated to be an index of recruitment of eels to the 
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Lake Ontario yellow eel fishery (Marcogliese et al., 1997). Juveniles commonly move even 
further upstream, to the waters of western Lake Ontario and lower Niagara River.  
Historically, the other large tributary rivers of Lake Ontario, e.g., the Oswego, Genessee and 
Black Rivers and the tributaries of the upper St. Lawrence River., e.g., the Ottawa and 
Richelieu Rivers are thought to have harboured a very large proportion of the juvenile eel 
population in the LO-SLR ecosystem, e.g., Lary and Busch (1997).  Dams on many of these 
rivers have essentially excluded juveniles from vast areas of habitat upstream of these 
migration barriers.  A similar situation exists in many parts of the range of A. rostrata 
(ASMFC, 2000). 

Helfman et al. (1987) show that juvenile females are distributed throughout the range of 
A. rostrata, but that males are generally restricted to estuarine habitats and are proportionally 
more abundant in the southeastern U.S.  The LO-SLR portion of the stock is exclusively 
females (Facey et al., 1987).  The duration of the juvenile stage varies considerably over the 
range of A. rostrata.  Females mature at greater size than do males and females from 
geographical extremes of the range, e.g., LO-SLR, mature later and at greater sizes than 
females from more southern waters (Helfman et al., 1987). 

Juvenile mortality rates have not been determined for A. rostrata.  DeLeo and Gatto (1995) 
report that the natural mortality rate for juvenile A. anguilla was 65 percent. Fisheries exist 
for juvenile A. rostrata in many jurisdictions (ASMFC, 1997).  Richkus and Whalen (1999) 
observe that all fishing mortality in A. rostrata is pre-spawning mortality; therefore, long-
lived juveniles are potentially subjected to high cumulative fishing mortality during their 
residence in rivers and estuaries.  The commercial juvenile eel fishery in the LO-SLR system 
is presently limited to Canadian waters.  Juvenile eel fisheries, using a variety of gears, occur 
in the Bay of Quinte, the eastern outlet basin of Lake Ontario, parts of the upper SLR-
Thousand Islands area, Lake St. Francis and Lake St. Pierre.  No data are available on fishing 
mortality rates for juvenile A. rostrata.  Juvenile fishing mortality rates can be expected to 
vary widely depending on the habitat (lake, river, estuary) jurisdiction, gear restrictions, 
seasons, etc.  Marcogliese et al. (1997) showed that the relative abundance of juvenile eels 
caught in a Lake Ontario yellow eel fishery was closely related to the numbers of juveniles 
passing the eel ladder at the Moses-Saunders Dam, with lags of five to eight years for 
different fishing techniques. 
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2.1.3.3 Maturing Silver-phase Eels 

In LO-upper SLR sub-stock, metamorphosis from the juvenile to the adult stage begins in 
freshwater.  Except for a series of artificial maturation experiments on A. anguilla, (e.g. 
Pankhurst and Sorensen (1984), Pankhurst (1982), Pankhurst (1984), and Sorensen and 
Pankhurst (1988)), the process is poorly understood.  During the downstream migration, 
maturing eels may move at considerable rates if conditions are suitable.  Downstream 
movement rates can exceed 30 km per day (Stasko and Rommel, 1997; K. McGrath, New 
York Power Authority, 123 Main St., White Plains, NY, 10601, pers. comm.).  During the 
downstream migration, silver-phase eels are subjected to several potential sources of natural 
mortality, turbine-induced mortality and fishing mortality.  Dutil et al. (1987) observed an 
apparently higher than expected number of natural mortalities in the St. Lawrence estuary, 
which was thought to be associated with osmotic stress during the transition from freshwater 
to marine conditions.  Some level of silver eel mortality is attributable to the passage of 
downstream migrants through turbines at hydroelectric generating stations and has been 
estimated as 25 to 40% by some authors (Castonguay et al., 1994a; Hadderingh, 1994).  
Long-standing tidal weir fisheries occur on many of the larger rivers and estuaries in the 
range of A. rostrata, e.g., the St. Lawrence estuary and the Richelieu (Eales, 1968) and 
Delaware Rivers.  Fishing mortality rates have been investigated only in the St. Lawrence 
River estuary where mark-recapture experiments have indicated an annual exploitation rate of 
about 23 percent (Caron and Verreault, 1997). 

2.2 Potential Causes of the Decline in Recruitment to the Lake Ontario-
Upper St. Lawrence River Ecosystem 

Although the decline of recruitment and abundance in the LO-SLR sub-stock are well-
documented, there are at least seven generally known, or suspected, causes of the decline, 
i.e.: 

• habitat loss/fragmentation due to blockage and/or impedance of upstream 
passage; 

• turbine mortality on silver eels during downstream passage; 

• overexploitation of multiple life stages, e.g., glass eels/elvers, yellow-phase eels, 
silver-phase eels; 

• microcontaminants and their effects on survival and reproduction; 

• oceanic environmental change; and 
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• pre-spawning mortality associated with swim bladder worm infections, and 

• the unregulated commercial harvest of Sargasso weed (Sargassum spp.) in the 
spawning zone. 

These suspected “causes of decline” in recruitment to the LO-SLR ecosystem are not 
exhaustive, but this list is thought to include most of the major factors that could be 
functioning to limit eel abundance in the system.  Although recruitment to the LO-SLR, at 
least recruitment to those portions of the sub-stock upstream of the Moses-Saunders 
generating station, is in dramatic decline, and there is some evidence of a continent wide 
decline (Richkus and Whalen, 1999), some eel researchers suggest that comparable elver 
recruitment declines have not occurred in other areas in the range of A. rostrata, (e.g. New 
Brunswick and New England. 

Castonguay et al. (1994a,b),  Casselman et al. (1997), Marcogliese et al. (1997), and 
Richkus and Whalen (1999) analyzed five of the above causes: 

• dam-induced fragmentation of upstream passage habitat preventing and/or 
delaying juvenile migration into rearing habitats, e.g., Lary and Busch (1997); 

• mortality of silver-phase eels passing through hydroelectric turbines during 
downstream migration (e.g., Hadderingh, 1990); 

• cumulative fishing mortality of multiple life-stages (Richkus and Whalen, 1999);  

• microcontaminants affecting reproductive success, e.g., Giesy et al. (1986), 
Hodson et al. (1992); and 

• oceanic environmental change (e.g., Greatbatch et al., 1991) affecting transport 
(McCleave, 1987) and/or survival of early life stages. 

These competent reviews consistently conclude that insufficient information is available to 
definitively determine that the decline is attributable to one or more of these causes.  
Therefore,  the literature on the five potential causes listed above will not be extensively 
reviewed here.  Two additional potential causes of the decline, which were not included in 
previous reviews, i.e., the potential effects of the exotic swim-bladder nematode, Anguillicola 
crassus, on the American eel population and respective sub-stocks, and the potential effects 
of the unregulated commercial harvesting of Sargassum (Sargassum spp.) in the spawning 
zone and nursery habitat of the American eel, deserve additional attention and are addressed 
below.   
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Anguillicola crassus 

The swimbladder nematode, A. crassus, parasitizes three anguillid species of eels: the 
Japanese eel, A. japonica, the European eel, A. anguilla, and the American eel, A. rostrata 
(Barse and Secor, 1999).  The life cycle, known only from studies on European eels, includes 
a required crustacean intermediate host, which is usually a copepod, and an optional 
paratenic host (i.e., transport hosts), which could be one of many species of finfish, as well as 
various species of insect larvae, snails, and amphibian larvae (Moravec and Konecny, 1994; 
Moravec and Skoríková, 1998).  Thus far, no work has been done to identify species of 
intermediate or paratenic hosts in North American systems. 

An important gap in our knowledge of eel biology is the contribution of A. crassus infections 
to the natural mortality, growth, and fecundity of American eels.  This nematode parasite has 
been shown to cause mass mortalities of eels in Europe (A. anguilla) at least in Lake Balaton 
in Hungary. It has also been implicated as a source of mortality in various aquaculture ponds.  
And there is much literature on sublethal (pre-lethal?) effects of this parasite on the health of 
the eel (Würtz and Taraschewski, 2000).   

Infections cause thickened swimbladder walls, inflammation, and dilation of blood vessels; 
but the effects of these pathological changes on the ability of the swimbladder to function as a 
hydrostatic organ are not known.  Kirk et al.(2000) reported on such pathological changes, 
as have been observed in many previous studies.  They proposed that because migrating silver 
eels undergo vertical migrations to the surface at night, and swim at 700 m depth by day, that 
the swimbladder pathologies caused by infections with A. crassus may impair the ability of 
eels to migrate to the Sargasso Sea for spawning. 

Eggs and leptocephali most likely cannot become infected because this parasite is infective 
for only eight days in full strength seawater, and no intermediate hosts (crustaceans, usually 
copepods) that live in marine systems have been identified  (Kirk et al., 2000).  All other life 
stages of eels can become infected, from glass eels to the silver eel stage (De Charleroy et al., 
1990; Thomas and Ollevier, 1992).  

Kirk et al. (2000) showed that, under laboratory conditions, most A. crassus can survive in 
eels maintained in 50% and 100% seawater for up to six months, and therefore, an infected 
silver eel could carry the physiological burden of this infection to its spawning grounds. Only 
about 10% of the worms in these 50% and 100% seawater-maintained eels were “damaged”.  
Furthermore, these authors demonstrated that a dominant calanoid copepod of estuaries of 
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the northern hemisphere Eurytemora affinis, can serve as an intermediate host, so that 
transmission in coastal brackish water is probable.  In the Baltic Sea, field studies have shown 
that two marine species of fish can serve as paratenic host: the black goby (Gobius niger), 
and the deep-snouted pipefish (Syngnathus typhle) (Höglund and Thomas, 1992; Reimer et 
al., 1994). 

Kirk et al. (2000) observed from infection experiments that the ability of juvenile stage A. 
crassus  to infect intermediate and paratenic hosts was greatest in fresh water, and declined 
with increases in salinity. However, larvae were infective to intermediate and paratenic hosts 
for 21 days in 50% seawater.  Thus, transmission in brackish water is probable.  Transmission 
is possible in fresh and brackish water systems, therefore it is unlikely that salinity will have a 
limiting effect on the spread of A. crassus in any of the sub-stocks of American eel. 

A. crassus has successfully colonized much of the east coast of North America from Florida 
to New York, yet it has not been found in the St. Lawrence River or in Nova Scotia (based 
on publications and personal communications with various scientists in the U.S. and Canada).  
This finding supports the prediction of Knopf et al. (1998) that A. crassus will not invade eel 
populations in the St. Lawrence River or northward due to the cold winter temperatures 
which predominate there.  They base this prediction on their experimental data showing 
significant reductions in A. crassus  larval development rates below 10°C.  At 4°C, juveniles 
are unable to invade the swimbladder wall. However, in eels maintained for 115 days at 4°C 
and then for 115 days at 19°C, the nematodes resumed normal development.  Thus, wherever 
A. rostrata are subjected to extended temperatures of 4-9°C or less, there may  be little or no 
transmission, or otherwise deleterious effects of this parasite.  Where summer temperatures 
are above 9°C, the parasite could be transmitted during those warmer months.  Survey data 
are needed to test these predictions. 
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Commercial Harvesting of Sargassum (Sargassum spp.) 

The unregulated commercial harvest of Sargassum  has been implicated as a potential factor 
in the decline of A. rostrata (ASMFC, 2000).  Sargassum is a combination of several species 
of large-bodied pelagic macroalgae  which arise in the Sargasso Sea and drift into other 
potions of the Atlantic.  Floating masses of sargassum are known to provide critical habitat 
for a wide variety of sea life including dolphin fish (Coryphaena hippurus) (also called mahi 
mahi), juvenile sea turtles, and seabirds and may represent  the single most important fish 
habitat in the blue waters off the Atlantic Coast.  It is possibly one of the few sources of 
energy in an otherwise nutrient-poor and energy-poor part of the ocean.  Despite its 
importance, this plant is not protected by any treaty, and it is routinely harvested for use in 
such products as plant fertilizers and hog feed supplements.  The South Atlantic Marine 
Fisheries Council has voted to phase out the harvest of pelagic Sargassum seaweed in U.S. 
waters.  Any possible role of sargassum in the spawning and/or early life history of A. 
rostrata is undetermined.   
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3.0 EVALUATING EFFECTS ON THE LAKE ONTARIO/ 
UPPER ST. LAWRENCE RIVER EEL SUB-STOCK 

3.1 Questionnaire  

Regulators and biologists involved in the management of eels in Canada and the United 
States were polled regarding their opinions concerning the relative importance of factors 
contributing to the state of the Lake Ontario/upper St. Lawrence sub-stock.  They were 
asked to indicate the importance of seven factors: 

• habitat destruction and fragmentation, especially with reference to the impedance 
by dams of upstream passage into suitable habitat; 

• mortality of silver eels caused by downstream passage of hydroelectric facilities; 

• over-exploitation related to the harvest of eels over several life stages; 

• the effects of microcontaminants, especially on reproductive success; 

• oceanic environmental change; 

• mortality associated with swimbladder infections by nematode worms; and 

• harvesting of Sargassum. 

Respondents were asked to rank the importance of each factor from 0 to 10, with 0 
representing no importance at all, and 10 representing the greatest possible importance. 

3.2  Development of a Life History-based Model 

The role of uncertainty in living natural resource management, and methods for dealing with 
it, have received increasing attention in recent years (Hilborn and Walters, 1992).  In 
particular, the problem of modeling populations for which population estimates and life 
history parameters are poorly known has prompted development of new approaches based on 
alternatives to the widely employed statistical hypothesis testing techniques (often referred to 
as frequentist statistics) in which the likelihood of detecting trends in the data decreases with 
increasing uncertainty (Taylor, 1993; Taylor and Gerodette, 1993; Taylor et al., 2000; Wade, 
2000).  

Among the features common to many such efforts has been the use of simple, theoretically 
based population dynamical models for which uncertainty may be modelled explicitly.  The 
methods of Bayesian statistics have informed much of the discussion, with the use of assumed 
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prior distributions gaining wider acceptance as a point of departure for modeling exercises 
(Wade, 2000). 

A full statistical treatment of the hypotheses competing as explanations for trends in 
American eel population data is beyond the scope of this report.  It is possible, however, to 
structure discussion around a plausible population dynamical model as a first step toward 
such an approach.  Such a model can also be analyzed regarding its sensitivity to variation in 
model parameters, permitting structured discussion of the plausibility of competing 
hypotheses under a range of assumptions. 

The Beverton-Holt model of stock recruitment (Beverton and Holt, 1957) has been widely 
used as a management tool by fisheries managers throughout the world.  It is generally used 
to model the density-dependent contribution of a spawning stock to a subsequent 
generation’s recruitment to a year class, life stage, or fishery.   

As demonstrated by Mousalli and Hilborn (1986), it (and any other stock recruitment model) 
can be employed in disaggregated form to model a sequence of steps in a stock’s life history.  
Put another way, transition to any life history stage from the previous stage can be modelled 
as a stock-recruitment relationship. 

The Beverton-Holt stock-recruitment function is employed for all life-history transitions in 
this model.  The form: 

(1) Nstage = pstage Nstage-1/ (1+ Nstage-1 pstage /cstage) 

where: Nstage  = stage abundance 

 pstage  = a stage production parameter, and  

 cstage = a stage capacity parameter  

permits the explicit inclusion of effects on recruitment at each stage through the introduction 
of variables or  functions that moderate production and capacity.  The production parameter 
is related to survivorship in all cases but egg production.  Egg production is a function of 
fecundity.  The effect of fishing mortality on stage production can be introduced by 
expanding equation (1) to: 
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(2) Nstage = pstage F stage-1 Nstage-1/ (1+ Fstage-1 Nstage-1 pstage /cstage) 

where: Fstage  =  stage fishing mortality 

Other sources of mortality could be modelled in the same way.  Similarly, the effects of 
habitat availability or suitability can be modelled through effects on capacity, which is 
analogous to the carrying capacity parameter in the familiar logistic growth function  on 
which much ecological theory is based.  

The model can further be structured around sub-stocks in which growth and life-history 
schedules, as well as anthropogenic influences, will differ.  American eel life history involves 
a series of life stages in different environments and migrations between and transitions to the 
various habitats.  It is therefore generally suited to the modeling approach of Mousalli and 
Hilborn (1986). 

In its initial implementation, we employed five sub-stocks: Lake Ontario- upper St. Lawrence 
River (LO-SLR), i.e., upstream of the Beauharnois dam; lower St. Lawrence River (SLR); 
Newfoundland and northern (NO); Nova Scotia - New York (NY); and southern (S).  These 
sub-stocks were based on our reading of reports which indicate geographic trends in many 
aspects of the life history, e.g., Helfman et al. (1987), Facey et al. (1987),   but on 
discussions with several eel researchers we added an additional stock on the US mid-Atlantic 
coast.  It extends from the Hudson River to North Carolina and is designated as the 
Chesapeake sub-stock.  Migrant juveniles are assumed to arrive in each sub-stock at different 
ages; the three most southern sub-stocks in their first year, Lake Ontario in its third year, and 
the others in their second year. Egg production is the sum of contributions from all sub-
stocks and the recruitment of eels to sub-stocks is modelled as a proportion of total 
recruitment to the glass eel stage.  Ranges for the proportions recruiting to each sub-stock 
employed in the model are presented in Table 3.2.  This process could be modelled as a 
function of factors such as Gulf Stream strength to investigate hypotheses related to the 
influence of the oceanic environment on sub-stock and overall population dynamics in future 
implementations. 

Both egg production and leptocephalus recruitment are modelled as density dependent 
processes with high values for c.  In the case of egg production, it is calculated as the 
summed production of females from each sub-stock, described by the equation: 
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(3) Negg = pegg (1-Fsilver) Smig Nsilver / (1+ (1-Fsilver) Smig Nsilver pegg /cegg) 

where: Negg = number of eggs produced per year 
 pegg   = egg production parameter  
 Fsilver  = fishing mortality on silver eels 
 Smig  = natural survivorship of migrating silver eels 
 Nsilver  = number of silver eels 
 cegg  = habitat capacity for eel eggs 
 
Recruitment to the leptocephalus stage follows the form: 
 
(4) Nlepto = plepto Segg Negg / (1+ plepto Segg Negg /clepto) 
 
where: Nlepto  = number of leptocephalus recruited 
 plepto   = leptocephalus production parameter  
 Segg  = natural survivorship of eggs to hatching 
 clepto  = habitat capacity for leptocephalus eels 
 
Recruitment to the glass eel stage is modelled as occurring prior to distribution to each sub-
stock. 
 
(5) Nglass = pglass Nlepto / (1+ pglass Nlepto /cglass) 

 
where: Nglass  = number of glass eels recruited 
 pglass   = glass eel production parameter  
 cglass  = habitat capacity for glass eels 
 
Recruitment to each sub-stock is defined at the first elver stage as: 
 
(6) Nelver(1) = pelver(1)(1-Fglass) ppnglass Nglass/(1+ pelver(1)(1-Fglass) ppnelver Nglass/celver(1)) 
 
where: Nelver(1) = number of glass eels recruited 
 pelver(1)   = elver(1) production parameter 
 Fglass  = fishing mortality on glass eels 
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 ppnelver  = the proportion of total glass eel production entering a sub-stock as 
elvers 

 celver(1)  = habitat capacity for elvers in age class elver(1) 
 
For sub-stocks in which multi-year juvenile migration is assumed (e.g. Lake Ontario-upper 
St. Lawrence River), recruitment to additional stages is described by: 
 
(7) Nelver(k) = pelver(k) Nelver(k-1)/ (1+ pelver(k) Nelver(k-1) / celver(k)) 
 
where: Nelver(k) = number of glass eels recruited to age class elver(k) 
 pelver(k)   = elver(k) production parameter 
 celver(k)  = habitat capacity for elvers in age class elver(k) 

Recruitment to resident age classes is defined by the equation: 
 
(8) Nyellow(1) = pyellow(1)(1-Felver) Nelver /(1+ pyellow(1)(1-Felver)Nelver/h cyellow) 
 
where: Nyellow(1) = number of glass eels recruited 
 Nelver = number of elvers in the last elver age class 
 pyellow(1)   = age class yellow(1) production parameter 
 Felver  = fishing mortality on elvers 
 cyellow  = habitat capacity for eels in age class yellow(1) 
 h  = proportion of original habitat currently available to resident eels. 
 
Recruitment to subsequent resident fully juvenile age classes (i.e. none metamorphose to 
silver eels) is defined by: 
 
(9)      Nyellow(i) = pyellow(i)(1-Fyellow(i-I)) N yellow(i-I) /(1+ pyellow(i)(1-Fyellow(i-I)) ? m-1

i-1N yellow(j) / h cyellow) 
 
where: Nyellow(i)  = number of eels in age class yellow(i) 
 m  = yellow age class in which metamorphosis to silver stage is 

assumed to begin 
 pyellow(i)   = age class yellow(i) production parameter 
 Fyellow(i)  = fishing mortality on age class yellow (i) 
 cyellow  = habitat capacity for eels in age class yellow(1) 
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 h  = proportion of original habitat currently available to resident eels. 
 
Abundance of immature eels old enough to become sexually mature is calculated as 
 
(10)  Nyellow(m+,t) = (pyellow(m)((1-Fyellow(m)) (N yellow(m+,t-1)-Nsilver(t)) +  

(1-Fyellow(m-1)) (Nyellow(m+,t-1)) /(1+ (pyellow(m)((1-Fyellow(m))  
(N yellow(m+,t-1)-Nsilver(t)) + (1-Fyellow(m-1))(N yellow(m+,t-1)) / h cyellow) 

 
where: Nyellow(m+,t)  =  number of eels in age classes yellow(m) and older in year t 

 Nsilver(t)                         =  number of silver eels produced in year t 

Silver eel recruitment is assumed to be density independent and is modelled as: 
 
(11) Nsilver = psilver (1-Fyellow(m+)) (N yellow(m+)). 

This form does not look like equation (1) but is the same relationship with an assumed infinite 
capacity.  This was concluded to be a reasonable assumption given the onset of outmigration 
as the metamorphosis from yellow to silver is completed, and the cessation of feeding 
associated with that process.  There did not seem to be any hypothesized mechanism through 
which density dependence could be mediated. 

A complete list and description of model parameters is shown on Table 3.1.  Data with which 
the model might be fitted are sparse for all populations of American eel.  There are some data 
regarding the age structure and fecundity of sub-stocks, e.g., Dutil et al. (1987), Facey et al. 
(1987), Krueger and Oliveira (1997).  There remains considerable room for interpretation and 
disagreement, however, and mortality rates, age of maturity, and mean fecundities for eels 
from different parts of their range are known only imprecisely.  

There are some data for gross fishing mortality (Caron and Verreault, 1997), but they are 
generally restricted to harvest data, with limited information on effort that would permit 
estimation of abundance indices (Richkus and Whalen, 1999).  Ranges for fishing mortality 
estimates were assigned on the basis of previous analyses (e.g., Caron and Verreault, 1997; 
ICES, 2000).  Virtually all other elements of the model can only be approximated.   

Some effort has been made to quantify habitat loss over much of the range (Lary and Busch, 
1997).  These data form the basis for estimates of habitat loss in the model.  However,  
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Table 3.1  Model parameter designations 
 
c(yellow)  = combined capacity (parameter c) for all substocks 
dams  = mean number of passable hydroelectric dams per unit capacity 
F(elver) = annual fishing mortality on the last elver stage 
F(glass) = annual fishing mortality on the glass eel stage 
F(silver) = annual fishing mortality on the silver stage 
F(yellow) = annual fishing mortality on the yellow stage 
h(yellow) = proportion remaining capacity after habitat exclusion and destruction 
p(egg)  = production parameter for the egg stage 
p(elver) = production parameter for the elver stage (substocks with one elver stage) 
p(elver1) = production parameter for elver stage 1 (substocks with multiple elver 
stages) 
p(elver2) = production parameter for elver stage 2 (substocks with multiple elver 
stages) 
p(elver3) = production parameter for elver stage 3 (substocks with three elver stages) 
p(glass) = production parameter for the glass eel stage 
p(lepto) = production parameter for the leptocephalus stage 
p(silver) = production parameter for the silver eel stage 
p(yellow1)  = production parameter for yellow stage 1  
p(yellow2)  = production parameter for yellow stage 2 
p(yellow3)  = production parameter for yellow stage 3 
p(yellow4)  = production parameter for yellow stage 4 
p(yellow5)  = production parameter for yellow stage 5 
ppn(elver)  = proportion of all elver production entering a given substock 
ppn(yellow) = proportion of total yellow eel capacity (parameter c) in a given substock 
S(dspassage) = mean survivorship of downstream passage of hydroelectric dams 
S(silver) = silver eel natural survivorship on migration 
 
Stock designation Postscripts 
 
C  = Chesapeake – Hudson River to North Carolina 
NO  = Newfoundland and northern 
NY  = Nova Scotia to New York (Hudson River) 
O  = Lake Ontario and upper St. Lawrence River 
S  = southern – south of North Carolina 
SL  = lower St. Lawrence River and Gulf of St. Lawrence 
 
 estimates of carrying capacity for the population or sub-stocks are lacking.  We employ a 
range of possible carrying capacities for the entire population and vary the relative 
proportions of that total in each sub-stock.  The model was also run with total yellow eel 
capacity fixed at 50,000,000 to examine the sensitivities of other parameters in the absence of 
variation in capacity. 
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Possible changes in the relative contribution to total reproduction from each sub-stock forms 
the basis of some hypotheses regarding observed changes in migrant juvenile numbers 
arriving at eel ladders, especially for the LO-SLR and SLR sub-stocks (Castonguay et al., 
1994). Therefore, proportions contributed to each sub-stock were permitted to vary among 
trials.  The proportion of reproduction recruiting to the Lake Ontario population was 
calculated as the proportion remaining after all other sub-stocks recruited. 

Oceanic effects are arguably the least tractable to management.  Model runs were therefore 
implemented in which production parameters of leptocephaplus larvae and glass eels were 
held constant (0.95 and 0.01, respectively).  All other aspects of these runs were identical to 
the fixed yellow eel capacity implementations with unequal sub-stock capacities. 

It was our original intention to use actual statistical distributions for at least some parameters, 
but the uncertainty regarding the extent to which published estimates were representative of 
the sub-stocks from which they were drawn led us to employ uniform distributions for all 
parameter ranges, as would be the assumed prior distribution in a Bayesian analysis (Wade, 
2000).  Such a distribution significantly increases the influence of parameter values at the 
extremes of the range and will undoubtedly have played a role in the ranking of influences.  
There did not seem to be any way to legitimately employ normal, lognormal, gamma or other 
commonly used statistical distributions and the risk averse approach seemed to be one which 
encompassed the uncertainty of the data. 

Plausible ranges for parameters (Table 3.2) were estimated from available literature and 
discussions with eel researchers.  The metapopulation software which we had hoped to be 
able to use for this work could not handle the panmictic nature of American eels sub-stocks.  
Rather than implement the model in a programming language such as Fortran or C++, we 
decided to use off-the-shelf software available to all fisheries managers. The model was 
implemented as a set of Excel spread sheets. The Crystal Ball risk assessment package 
(Wainwright, 1998) was used to conduct sensitivity analyses.   

Silver eel and egg production for LO-SLR and all sub-stocks combined were calculated over 
1,000 trials.  Proportion of total silver eel numbers and egg production were also calculated 
for the LO-SLR sub-stock.  Sensitivity of these outcomes to all parameters was output as 
rank correlations.   
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TABLE 3.2: PARAMETER VALUES EMPLOYED FOR SENSITIVITY ANALYSIS 
 
 
Parameter 

 
Stage 

 
All 

L. Ontario 
(LO-SLR) 

St. Lawrence 
(SLR) 

 
North (NO) 

NS-NY 
(NY) 

 
Ches. (C) 

 
South (S) 

 egg  3.5-8 x 106 2.5-6 x 106 2.5- 6 x 106 2.5-6 x 106 2-5 x 106 0.8-2 x 106 
 lepto 0.7-0.99       
 glass 0.001-0.05       
 elver 1 0.15-0.25       
 elver 2  0.2-0.3 0.2-0.3 0.2-0.3    
 elver 3 0.25-0.35       
p yellow 1 0.34-0.44       
 yellow 2 0.4-0.5       
 yellow 3 0.55-0.69       
 yellow 4 0.74-0.89       
 yellow 5+ 0.75-0.9       
 silver  0.1-0.3 0.2-0.4 0.1-0.4 0.2-0.4 0.3-0.5 0.4-0.6 

 egg 1 x 1018       
 lepto 1 x 1018       
c glass 1 x 1018       
 elver 1 x 1018       
 yellow 10-100 x 106       
 elver   0.1-0.3 0.05-0.15 0.05-0.15 0.05-0.15 0.05-0.15 
         
ppn yellow   0.2-0.3 0.05-0.15 0.15-0.25 0.05-0.15 0.05-0.1 
 F (glass)     0-0.01 0-0.01 0-0.1 
F F (elver) 0-0.05       
 F (yellow) 0-0.18       
 F (silver) 0-0.2       
h yellow 0.5-1       
dams silver 0-2       
S(ds) silver 0.5-0.85       
S(mig) silver 0.5-0.9       
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Individual deterministic outcomes were also calculated for intermediate and high values of 
key parameters, in isolation from other effects.  Model output without variability under 
various assumed effects for individual parameters, intermediate and high combined effects  is 
presented in Section 4.0.  Base case runs are premised on no habitat reduction, fishing effects 
or perturbation from original conditions. Parameter values for base case runs were therefore 
either 0 (e.g., fishing mortality parameters, number of dams) or 1 (e.g., habitat reduction 
parameter), depending on their form.  Parameter values used in other runs were selected to 
provide some indication of the relative effect on the model of varying factors acting in 
isolation, and should not be read as predictive results for each case.  Parameters other than 
those under comparison were equal in all runs, and from within the range employed in the 
sensitivity analyses (see Table 3.2), but were arbitrarily assigned.  Outcomes with total 
carrying capacity equally divided among sub-stocks and apportioned unequally are presented. 
Total resident capacity is fixed at 50 million yellow eels for deterministic runs. 
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4.0 RESULTS 

4.1 Questionnaire 

We received eleven responses to the questionnaire.  Respondents included representatives of 
the Ontario Ministry of Natural Resources,  New York Department of Environment and 
Conservation,  Department of Fisheries and Oceans,  United States Geological Survey,  
National Marine Fisheries Service,  the St. Regis Mohawk and the New York Power 
Authority,  Ontario Power Generation (formerly Ontario Hydro). The mean values and 
standard deviation of responses to the questionnaire are summarized in Table 4.1.   

Table 4.1: Questionnaire Results.  Respondents were asked to rank the importance, from 0 
to 10 of the following factors to American eel population dynamics with reference 
to contemporary management issues.  A rating of 0 mean no importance and 10 
would be the utmost importance. 

 
Issue        Mean  SD 
 
Habitat loss/upstream passage      8.0  2.6 
Downstream passage      7.3  2.3 
Overexploitation of all life stages    6.5  2.5 
Contaminant effects on reproduction    4.8  2.8 
Ocean environment      4.2  2.0 
Swimbladder mortality     3.3  3.0 
Sargassum harvest        -                       - 

 

4.2 Model Implementation and Sensitivity Analyses 

Runs with Fixed Values 

Model implementation with combined effects at the high end of assumed ranges led to an 
order of magnitude drop in total egg production (Tables 4.2 and 4.3) and, in the case with 
late onset of maturation in the Lake Ontario sub-stock, a reduction by approximately half in 
the proportion of production originating in the Lake Ontario sub-stock (Table 4.2). 
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Reduction of the available habitat in Lake Ontario (LONT) to very low levels had a limited 
effect on total production (Tables 4.2 and 4.3).  Fishing yellow and silver eels at an annual 
exploitation rate of 9% had the greatest effect, followed by an average of 2 dams per unit of 
available habitat with 75% passage survivorship at each dam, and loss of 33% of total habitat 
(all stocks).  An elver fishery at 5% annual exploitation rate has a negligible effect on 
production (Tables 4.2 and 4.3). 

Sensitivity to Parameters 

Sensitivity analyses involved calculating the rank correlation of parameter values with results, 
and were carried out on six model configurations: 

• early (12 years) onset of maturation in LO-SLR with variable total yellow eel 
habitat carrying capacity; 

• late (17 years) onset of maturation in LO-SLR with variable total yellow eel 
habitat carrying capacity; 

• early onset of maturation in LO-SLR with constant total yellow eel habitat 
carrying capacity; 

• late onset of maturation in LO-SLR with constant total yellow eel habitat carrying 
capacity;  

• early onset of maturation in LO-SLR with constant total yellow eel habitat 
carrying capacity and fixed leptocephalus and glass eel production; and 

• late onset of maturation in LO-SLR with constant total yellow eel habitat carrying 
capacity and fixed leptocephalus and glass eel production. 

These analyses generated plots of rank correlation coefficients as presented in Figures 4.1 
to 4.6.  See Appendix A for details on maturation schedules for LO-SLR.  Notable consistent 
trends include high coefficients for the influence of glass eel production on abundance of 
silver eels and egg production.  Glass eel production was less influential on the proportions of 
silver eels and eggs originating in the Lake Ontario sub-stock in runs with later onset of 
maturation of LO-SLR eels.  Fixing production parameters for leptocephalus and glass eel 
stages had little influence on the ranking of sensitivities for other parameters.  Variation in 
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production parameters generally influences the outcome of the model. Fishing mortality on 
yellow and silver eels in several sub-stocks, notably LO-SLR and SLR, also appear 
consistently among the most influential factors.  Frequency distributions of results for these 
four cases, run over 1,000 trials, with associated descriptive statistics, are presented in 
Appendix B. 
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Table 4.2: Outcomes of model runs for selected forecasts of the model with early  
 matuation of Lake Ontario eels, based on manipulations of single  
 parameters, intermediate values of the parameter set, and high values for the  
 parameter set. See Table 3.1 for model parameter designations. 
 
 
  Parameter   Total   Total     Total    Total 
Case       Set  N50(silver)  N50(egg)  N50(silver) N50(silver) 
 
  Base case 8.30E+11 3.7852E+05 0.1533  0.0961 
 
  habitat = 0.67 5.65E+11 2.5629E+05 0.1504  0.0946 
 
  F = 0.09 4.30E+11 2.3193E+05 0.1322  0.0769 
 
Equal c elver F = 0.05 8.24E+11 3.7394E+05 0.1542  0.0970 
 
  dams = 2 4.62E+11 3.7520E+05 0.1509  0.0944 
 
  hOnt = 0.0001 6.95E+11 3.3960E+05 0.0000  0.0000 
 
  Intermediate 1.91E+11 1.1885E+05 0.1801  0.1213 
 
  High  5.69E+10 8.4655E+04 0.1616  0.1076 
 
 
  Base case 8.30E+11 3.7852E+05 0.1533  0.0961 
 
  habitat = 0.67 5.37E+11 2.1544E+05 0.2030  0.1446 
 
  F = 0.09 3.69E+11 1.7418E+05 0.1931  0.1285 
 
Unequal c elver F = 0.05 7.75E+11 3.1112E+05 0.2102  0.1496 
 
  dams = 2 4.32E+11 3.1023E+05 0.2051  0.1452 
 
  hOnt = 0.0001 6.29E+11 2.7186E+05 0.0000  0.0000 
 
  Intermediate 1.91E+11 1.1885E+05 0.1801  0.1213 
 
  High  5.69E+10 8.4655E+04 0.1616  0.1076 
 
 
Table 4.3: Outcomes of model runs for selected forecasts of the model with late  
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 matuation of Lake Ontario eels, based on manipulations of single  
 parameters, intermediate values of the parameter set, and high values for  
 the parameter set. See Table 3.1 for model parameter designations. 
 
 
 
  Parameter   Total   Total     Total    Total 
Case       Set  N50(silver)  N50(egg)  N50(silver) N50(silver) 
 
  Base case 7.47E+11 3.5451E+05 0.0595  0.0358 
 
  habitat = 0.67 4.92E+11 2.3444E+05 0.0601  0.0361 
 
  F = 0.09 3.92E+11 2.1992E+05 0.0338  0.0189 
 
Equal c elver F = 0.05 7.40E+11 3.4996E+05 0.0599  0.0362 
 
  dams = 2 4.16E+11 3.5154E+05 0.0585  0.0352 
 
  hOnt = 0.0001 6.94E+11 3.3876E+05 0.0000  0.0000 
 
  Intermediate 1.90E+11 1.4176E+05 0.0338  0.0189 
 
  High  5.73E+10 1.0181E+05 0.0309  0.0173 
 
 
  Base case 6.71E+11 2.8278E+05 0.0847  0.0575 
 
  habitat = 0.67 4.58E+11 1.9208E+05 0.0829  0.0565 
 
  F = 0.09 3.26E+11 1.6136E+05 0.0506  0.0322 
 
Unequal c elver F = 0.05 6.68E+11 2.8042E+05 0.0849  0.0578 
 
  dams = 2 3.74E+11 2.8024E+05 0.0825  0.0559 
 
  hOnt = 0.0001 6.29E+11 2.7162E+05 0.0000  0.0000 
 
  Intermediate 1.64E+11 1.0732E+05 0.0484  0.0310 
 
  High  4.93E+10 7.6972E+04 0.0425  0.0270 
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Figure 4.1.  Model sensitivity analysis output for trials with variable total yellow eel capacity, 

and early maturation of LO-SLR eels.  Values are rank correlations of the ten 

Target Forecast:  N50(silver) Total

c(yellow) .83

p(glass) .22
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h(yellow)S .11
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F(yellow)SL -.10

h(yellow)SL .09

p(yellow5)NY .09

-1 -0.5 0 0.5 1

Measured by Rank Correlation

Sensitivity Chart

Target Forecast:  N50(silver) Ontario

c(yellow) .55

F(yellow)O -.43

p(yellow5)O .41

p(glass) .30

p(silver)O .22

h(yellow)O .16

ppn(yellow)SL -.11

ppn(yellow)C -.09

ppn(yellow)NO -.09

p(elver1)O .09

-1 -0.5 0 0.5 1

Measured by Rank Correlation

Sensitivity Chart

 

Target Forecast:  ppn(silver) Ontario

F(yellow)O  -.57 
p(yellow5)O  .52 
p(glass) .25 
p(silver)O  .23 
ppn(yellow)S -.18 
h(yellow)O  .17 
ppn(yellow)SL -.16 
p(yellow5)S -.13 
ppn(yellow)NO -.12 
ppn(yellow)NY -.12 

-1 -0.5 0 0.5 1 
Measured by Rank Correlation 

Sensitivity Chart  
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coefficients of greatest magnitude influencing total silver eel abundance (N50(silver) 
Total), silver eel abundance prior to out-migration from Lake Ontario and the upper 
St. Lawrence (N50(silver)Ontario), and the proportion of total silver eel abundance 
represented by silver eels produced in Lake Ontario and the upper St. Lawrence 
(ppn(silver)Ontario), after 50 years.  Model parameter designations are described in 
Table 3.1. 

 

 

 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Target Forecast:  N50(egg) Total

c(yellow) .76

p(glass) .24

p(yellow5)SL .17

p(yellow5)O .13

F(yellow)O -.12

p(yellow5)NY .12

F(yellow)SL -.12
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damsNY -.11

F(yellow)NY -.11
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Measured by Rank Correlation
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Target Forecast:  N50(egg) Ontario

c(yellow) .52

F(yellow)O -.40

p(yellow5)O .38

p(glass) .29

damsO -.23

p(egg)O .20

p(silver)O .17

S(dspassage)O .15

S(silver)O .14

h(yellow)O .14

-1 -0.5 0 0.5 1

Measured by Rank Correlation
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Target Forecast:  ppn(egg) Ontario

F(yellow)O -.49

p(yellow5)O .46

damsO -.25

p(egg)O .23

p(glass) .21

S(silver)O .17

S(dspassage)O .16

p(silver)O .16

ppn(yellow)S -.15

h(yellow)O .14

-1 -0.5 0 0.5 1

Measured by Rank Correlation
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Figure 4.1.  Model sensitivity analysis output for trials with variable total yellow eel capacity, 
and early maturation of LO-SLR eels.  Values are rank correlations of the ten coefficients of 
greatest magnitude influencing total eel egg production (N50(egg)Total), eel egg production 
by eels originating in Lake Ontario and the upper St. Lawrence (N50(egg)Ontario)), and the 
proportion of total  egg production represented by eggs produced by eels originating in Lake 
Ontario and the upper St. Lawrence (ppn(egg)Ontario)) after 50 years.  Model parameter 
designations are described in Table 3.1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1. Model sensitivity analysis output for trials with variable total yellow eel 
capacity, and early maturation of LO-SLR eels.  Values are rank correlations of the 
ten coefficients of greatest magnitude influencing maturation age of eels originating in 
Lake Ontario and the upper St. Lawrence,  after 50 years.  Model parameter 
designations are described in Table 3.1. 
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Figure 4.2.  Model sensitivity analysis output for trials with variable total yellow eel capacity, 

and late maturation of LO-SLR eels.  Values are rank correlations of the ten 
coefficients of greatest magnitude influencing total egg production (N50(egg)Total), 
egg production by eels originating in Lake Ontario and the upper St. Lawrence 

Target Forecast:  N50(egg) Total

c(yellow) .75

F(yellow)SL -.31

p(glass) .29

F(glass)NY -.20
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Target Forecast:  N50(egg) Ontario

F(yellow)O -.55

p(yellow5)O .49

c(yellow) .42

p(glass) .21

S(dspassage)O .18

ppn(yellow)SL -.18
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p(yellow4)NY .16
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p(egg)O .15
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Measured by Rank Correlation
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Target Forecast:  ppn(egg) Ontario

F(yellow)O -.62

p(yellow5)O .56

p(yellow5)SL -.25

ppn(yellow)SL -.24

S(silver)O .19
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p(yellow5)S -.18

S(dspassage)O .16

ppn(yellow)C -.15

p(yellow3)S -.15
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Measured by Rank Correlation
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(N50(egg)Ontario)), and the proportion of total egg production represented by eggs 
produced by eels originating in Lake Ontario and the upper St. Lawrence 
(ppn(egg)Ontario)) after 50 years.  Model parameter designations are described in 
Table 3.1. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Target Forecast:  N50(silver) Total

c(yellow) .80

F(yellow)SL -.29

p(glass) .27

F(glass)NY -.23
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Target Forecast:  N50(silver) Ontario

F(yellow)O -.56
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Target Forecast:  ppn(silver) Ontario

F(yellow)O -.66

p(yellow5)O .63
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p(yellow5)S -.23
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Figure 4.2. Model sensitivity analysis output for trials with variable total yellow eel capacity, 
and late maturation of LO-SLR eels.  Values are rank correlations of the ten coefficients of 
greatest magnitude influencing total silver eel adundance (N50(silver) Total), silver eel 
abundance prior to migration in Lake Ontario and the upper St. Lawrence 
(N50(silver)Ontario), and the proportion of total silver eel abundance represented by silver 
eels produced in Lake Ontario and the upper St. Lawrence (ppn(silver)Ontario), after 50 
years.  Model parameter designations are described in Table 3.1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.2.   Model sensitivity analysis output for trials with variable total yellow eel capacity, 
and late maturation of LO-SLR eels.  Values are rank correlations of the ten coefficients of 
greatest magnitude influencing mean maturation age of eels originating in Lake Ontario and 
the upper St. Lawrence after 50 years.  Model parameter designations are described in Table 
3.1. 
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p(glass) .44

F(yellow)NY -.29

p(yellow5)SL .25

F(yellow)SL -.25

ppn(yellow)S .23
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Figure 4.3.  Model sensitivity analysis output for trials with constant total yellow eel capacity (c = 50 
E+6), and early maturation of LO-SLR eels.  Values are rank correlations of the ten 
coefficients of greatest magnitude influencing total silver eel adundance (N50(silver) Total), 
silver eel abundance prior to out-migration  from Lake Ontario and the upper St. Lawrence 
(N50(silver)Ontario), and the proportion of total silver eel abundance represented by silver 
eels produced in Lake Ontario and the upper St. Lawrence (ppn(silver)Ontario), after 50 
years.  Model parameter designations are described in Table 3.1. 
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Target Forecast:  N50(egg) Total
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Target Forecast:  N50(egg) Ontario
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Figure 4.3.  Model sensitivity analysis output for trials with constant total yellow eel capacity (c 
= 50 E+6), and early maturation of LO-SLR eels.  Values are rank correlations of the ten 
coefficients of greatest magnitude influencing total egg production (N50(egg)Total), egg 
production by eels originating in Lake Ontario and the upper St. Lawrence 
(N50(egg)Ontario)), and the proportion of total egg production represented by eggs 
produced by eels originating in Lake Ontario and the upper St. Lawrence 
(ppn(egg)Ontario)) after 50 years.  Model parameter designations are described in Table 
3.1.. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Target Forecast:  N50(egg) Total

p(glass) .32

p(yellow5)SL .29

F(yellow)SL -.28
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Figure 4.4.  Model sensitivity analysis output for trials with constant total yellow eel capacity 
(c = 50 E+6), and late maturation of LO-SLR eels.  Values are rank correlations of 
the ten coefficients of greatest magnitude influencing total egg production 
(N50(egg)Total),  egg production by eels originating in Lake Ontario and the upper 
St. Lawrence (N50(egg)Ontario)), and the proportion of total egg production 
represented by eggs produced by eels originating in Lake Ontario and the upper St. 
Lawrence (ppn(egg)Ontario)) after 50 years.  Model parameter designations are 
described in Table 3.1  
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Figure 4.4. Model sensitivity analysis output for trials with constant total yellow eel capacity 
(c = 50 E+6), and late maturation of LO-SLR eels.  Values are rank correlations of the ten 
coefficients of greatest magnitude influencing total silver eel adundance (N50(silver) Total), 
silver eel abundance prior to migration in Lake Ontario and the upper St. Lawrence 
(N50(silver)Ontario), and the proportion of total silver eel abundance represented by silver 
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eels produced in Lake Ontario and the upper St. Lawrence (ppn(silver)Ontario), after 50 
years.  .  Model parameter designations are described in Table 3.1  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.4. Model sensitivity analysis output for trials with constant total yellow eel capacity 
(c = 50 E+6), and late maturation of Lake Ontario eels.  Values are rank correlations of the 
ten coefficients of greatest magnitude influencing maturation age of eels originating in Lake 
Ontario and the upper St. Lawrence after 50 years. Model parameter designations are 
described in Table 3.1   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Target Forecast:  mean mature Ontario
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Figure 4.3.  Model sensitivity analysis output for trials with constant total yellow eel capacity (c 
= 50 E+6), and early maturation of LO eels.  Values are rank correlations of the ten 
coefficients of greatest magnitude influencing maturation age of eels originating in Lake 
Ontario and the upper St. Lawrence after 50 years. .  Model parameter designations are 
described in Table 3.1. 
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Figure 4.5.  Model sensitivity analysis output for trials with constant total yellow eel capacity 
(c = 50 E+6), early maturation of LO-SLR eels,  and fixed production of oceanic stages.  
Values are rank correlations of the ten coefficients of greatest magnitude influencing total 
egg production (N50(egg)Total), egg production by eels originating in Lake Ontario and the 
upper St. Lawrence (N50(egg)Ontario)), and the proportion of total egg production 
represented by eggs produced by eels originating in Lake Ontario and the upper St. Lawrence 
(ppn(egg)Ontario)) after 50 years.  Model parameter designations are described in Table 3.1. 
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Figure 4.5.  Model sensitivity analysis output for trials with constant total yellow eel capacity 
(c = 50 E+6), early maturation of LO-SLR eels,  and fixed production of oceanic stages.  
Values are rank correlations of the ten coefficients of greatest magnitude influencing total 
silver eel adundance (N50(silver) Total), silver eel abundance prior to out-migration  from 
Lake Ontario and the upper St. Lawrence (N50(silver)Ontario), and the proportion of total 
silver eel abundance represented by silver eels produced in Lake Ontario and the upper St. 
Lawrence (ppn(silver)Ontario), after 50 years.  Model parameter designations are described 
in Table 3.1.
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Figure 4.5.  Model sensitivity analysis output for trials with constant total yellow eel capacity 
(c = 50 E+6),  early maturation of LO eels,  and fixed production of oceanic stages.  Values 
are rank correlations of the ten coefficients of greatest magnitude influencing maturation age 
of eels originating in Lake Ontario and the upper St. Lawrence after 50 years. .  Model 
parameter designations are described in Table 3.1. 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Target Forecast:  mean mature Ontario

p(silver)O -.66

F(yellow)O -.53

p(yellow5)O .47

ppn(yellow)NY .09

p(yellow4)NO .09

S(dspassage)O -.08

p(yellow3)S -.07

h(yellow)C .07

p(egg)O .06

h(yellow)NY .06

-1 -0.5 0 0.5 1

Measured by Rank Correlation

Sensitivity Chart

Target Forecast:  N50(egg) Total

F(yellow)NY -.35

F(yellow)SL -.33

p(yellow5)SL .27

p(yellow5)NY .26

p(egg)SL .21

p(egg)NY .19

F(yellow)C -.18

damsSL -.16

F(yellow)O -.16

p(egg)S .16

-1 -0.5 0 0.5 1

Measured by Rank Correlation

Sensitivity Chart



American Eel White Paper 
 

 
Beak International Incorporated 
Ref.:  21852.10   

 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
            
            
            
            
            
          

 

Figure 4.6.  Model sensitivity analysis output for trials with constant total yellow eel capacity 
(c = 50 E+6),  late maturation of LO-SLR eels,  and fixed production of oceanic stages.  
Values are rank correlations of the ten coefficients of greatest magnitude influencing total 
egg production (N50(egg)Total),  egg production by eels originating in Lake Ontario and the 
upper St. Lawrence (N50(egg)Ontario)), and the proportion of total egg production 
represented by eggs produced by eels originating in Lake Ontario and the upper St. Lawrence 
(ppn(egg)Ontario)) after 50 years.  Model parameter designations are described in Table 3.1
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Figure 4.6. Model sensitivity analysis output for trials with constant total yellow eel capacity 
(c = 50 E+6),  late maturation of LO-SLR eels,  and fixed production of oceanic stages.  
Values are rank correlations of the ten coefficients of greatest magnitude influencing total 
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Ontario and the upper St. Lawrence (N50(silver)Ontario), and the proportion of total silver 
eel abundance represented by silver eels produced in Lake Ontario and the upper St. 
Lawrence (ppn(silver)Ontario), after 50 years.  Model parameter designations are described 
in Table 3.1 
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Figure 4.6. Model sensitivity analysis output for trials with constant total yellow eel capacity 
(c = 50 E+6),  late maturation of Lake Ontario eels,  and fixed production of oceanic stages.  
Values are rank correlations of the ten coefficients of greatest magnitude influencing 
maturation age of eels originating in Lake Ontario and the upper St. Lawrence after 50 years. 
Model parameter designations are described in Table 3.1   
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5.0 DISCUSSION 

Any thought of attempting a rigorous statistical treatment of American eel population 
dynamics was abandoned early in the exercise when it became apparent that there was 
disagreement on virtually every quantitative aspect for which there were data.  The 
disagreement is presumably only limited by the fact that there are no data whatsoever for 
many important life processes. 

It must also be emphasized that the model presented here is not adequate as a management 
tool. It is intended to inform the process of setting priorities for further work by illuminating 
the most important aspects of system  dynamics based on available information.  The 
questions being asked are about how factors interact under various assumptions and the 
values employed are approximations based on a small amount of scientific information (itself 
usually hotly disputed) and anecdotal information from managers and eel researchers. 

The model form was chosen because of its general acceptance in the fisheries management 
community and its tractability.  Given sufficient effort to fill the gaps in data, the model, or 
something very much like it, might well form the basis of a useful management tool. 

We abandoned efforts to explicitly model effects of contaminants, parasites or oceanic 
currents in any theoretically explicit manner.  The discussion about factors acting to increase 
mortality generally will have application to questions about the possible effects of 
contaminants or parasites.  The only effort made to peer into the murk of ocean currents as 
an issue was the variance of the relative proportion of recruitment to each subpopulation.  
This is crude, to say the least, but the absence of any information about how young eels get 
to their coastal destinations forced us to conclude that any such model would be pure artifice. 

The first notable outcome of the modeling exercise is the observation that there is tight 
correspondence between the indications of the modeling exercise (Figures 4.1 to 4.6) and the 
opinion sample, with one notable exception (Table 4.1).  The low importance attached to 
hypotheses related to oceanic processes, and the absence of any opinion whatsoever on the 
possible effects of harvesting sargassum, contrasts with the importance of glass eel 
production in the modeling exercise (Figures 4.1 to 4.6). 

The influence of glass eel production on the outcome of several key indicators suggests that 
oceanic processes may well have an important effect on freshwater subpopulations.  It must 
be acknowledged that this result is based on a range of production parameters that include a 
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very low assumed natural survivorship, the values all fall within the range of best guesses 
provided during the consultation process.  

The opinion survey also could be interpreted to have rated downstream passage issues more 
strongly than the sensitivity analysis, although both number of dams and passage survivorship 
do appear among the ten most sensitive parameters in some forecasts (Figures 4.1 to 4.6). 

The strong influence of parameters for which data are limited or nonexistent precludes any 
strict ranking of causes of the observed decline in recruitment of eels to the LO-SLR sub-
stock.  Given the caveat that the choice of parameter ranges will accept the outcome, it is 
possible to rank their plausibility as primary sources of declines of LO-SLR eel abundance. 

Runs with Fixed Values 

The individual model runs (Table 4.2 and 4.3) show that individual effects can have 
substantial effects on total eel abundance.  In particular, it is clear that fishing mortality, 
habitat availability, and passage mortality can be significant factors contributing to declines 
within the range of values examined by the model.  It is also clear at that the high end of 
effect ranges used in these models, acting in combination, can lead to a very large decline in 
egg production and mature eel abundance. 

Sensitivity to Parameters 

Life History Parameters 

Production parameters figure among the top ten influences on outcomes throughout the 
sensitivity analyses, particularly for older stages. Gaps in understanding of fecundity and 
natural survivorship are therefore significant constraints on any further effort to describe the 
effects of other sources of mortality, limits on fecundity or effects on capacity. 

The production parameters and capacities for oceanic stages (leptocephalus and glass eels) 
are not acted on by any other parameters.  This was a consideration in setting relatively broad 
limits on the production parameters, as putative effects from the harvesting of Sargassum 
spp., marine pollutants, or other factors affecting survivorship in the ocean would act through 
them.  Any changes in recruitment to oceanic stages will be passed on through the modeling 
of all sub-stocks.  For these reasons, caution is advisable in dismissing consistent high 
sensitivity to the glass eel production parameter as an artifact of the choice of parameter 
values.  It suggests that effects in the ocean could be critically important to recruitment to 
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later life stages and that a better understanding of what occurs there would significantly 
improve the ability to predict the effects of other variables.   

Selecting appropriate values for egg production was complicated by substantial uncertainty 
regarding possible density dependent effects on sex ratios and the lack of estimates for mean 
gross fecundities.  The model is exclusively concerned with female eels.  If total recruitment 
in all sub-stocks is numerically biased towards males, the egg production parameters will be 
lower than if the ratio is balanced or female biased.   

Recent work has suggested that large females may produce extremely large numbers of eggs.  
There are apparently no data on whether larger females also produce larger, more viable ova, 
as has been documented for other species in which females of many different sizes contribute 
to the spawning stock (Trippel, 1995).  Such a phenomenon could presumably only be 
documented in the period immediately prior to spawning when ova are fully ripened, and we 
are not aware of any such studies. The effect of a relationship between females size and ovum 
size could be modelled through a weighted calculation of production variables for the 
leptocephalus stage, and perhaps other older stages, but such an effort would be complicated 
and speculative.  A simpler approach would be to weight calculation of mean fecundity by 
female size, effectively treating ova from smaller females as less than an entire egg.  At any 
rate, our estimates of ranges for mean fecundities for the sub-stocks are clearly subject to 
many caveats. 

The question of a possible relationship between maternal size and egg size is also relevant to 
assumptions about the randomness of larval transport.  If large females produce large 
offspring, and female size is markedly different among stocks as has been suggested, 
assumptions about the panmictic nature of the stock would have to be re-examined.  The 
production parameters for older life history stages affect estimates of egg production and the 
list of parameters to which Lake Ontario silver eel and egg production are most sensitive 
includes both the 5+ yellow and silver stage production parameters.  Varying the age 
structure of the Lake Ontario sub-stock affects the relative importance of the habitat loss 
parameter.  Extending the residency period prior to onset of maturation by five years, from 
12 to 17, slightly reduces its influence on production and proportion of eggs and silvers 
originating in Lake Ontario (Figures 4.3 and 4.4). 

Habitat Capacity 
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There are local studies of resident eel habitat use (e.g. Bozeman et al. 1985). However, the 
highly imperfect understanding of habitat use, distribution, and abundance of American eels 
throughout their range makes assigning values for capacity difficult.   

Additionally, the model addresses female population dynamics, and some of the proposed 
effects on eel abundance may interact with life history in poorly understood ways.  The 
question of whether sex ratios are density dependent could affect outcomes in several ways.  
For example, reduction of available habitat would increase densities, all other things being 
equal, and could, in the short term, reduce the effective capacity for females by much more 
than a simple factor of the actual habitat loss.  The effect is, in fact, largely conjecture, and 
there are no data available with which to attempt to model such effects. 

It is not surprising that variation over an order of magnitude of the gross carrying capacity 
has a marked direct effect on egg production and less effect on the proportion of silver eel or 
egg production relative to the total. The relative effects of the other parameters ( see Figures 
4.1 to 4.6, and Appendix B) vary somewhat if capacity is allowed to vary in the trials.  For 
the most part, however, the variation is seen in sensitive parameters of the sub-stocks with 
largest capacity (lower St. Lawrence and Nova Scotia-New York). 

The effect of the habitat availability parameter on outcomes is obscured in runs with variable 
total capacity (Figures 4.1 and 4.2).  Insofar as the habitat parameter acts through the 
capacity parameter, this is not surprising.  The effect of Lake Ontario habitat loss on the 
production and proportion of silver eels and eggs originating in the Lake Ontario sub-stock is 
stronger in runs with assumed early onset of maturation in Lake Ontario eels.  Total 
production shows some sensitivity to habitat effects in larger sub-stocks (Figures 4.3 
and 4.5). 
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Oceanic Environment 

Carrying capacities for all stages in the ocean environment are set at extremely high levels, 
given the nature of the life styles of the stages living there.  Density dependent effects should 
not be a factor to any degree at any of these stages. 

The order of magnitude range on the bounds on glass eel production notwithstanding, the 
influence of glass eel production on the model (Figures 4.1 to 4.6), speaks to the potential 
importance of oceanic processes on the status of all sub-stocks.  Natural mortality of the 
youngest stages is certainly very high – that is the norm for young, small, unprotected animals 
generally.  If even one one-thousandth of the egg production of a single large female 
producing 20 million eggs survives to glass eel stage, twenty thousand of her progeny will 
leave the Gulf Stream and head for shore. The effect on recruitment to older stages of 
increasing mortality at the youngest stages through harvesting of Sargassum, global warming, 
marine pollution or changes to the Gulf Stream appears to matter, within the range of 
parameter values proposed in this model. 

The hypothesized effect of changes in the Gulf Stream on larval transport and recruitment to 
more northerly stocks (e.g., Castonguay, 1994b) has not been properly investigated. The fact 
that the proportion of elver production recruiting to more southerly sub-stocks registers as a 
correlate of the proportion of eggs and silver eels (Figures 4.1 to 4.2) is not entirely 
convincing because of the fact that Lake Ontario elver recruitment is calculated as a function 
of recruitment to other sub-stocks.  It does indicate, however, that the relationship is not 
entirely swamped by other factors. 

Elver and glass eel fisheries register as correlates of silver eel production in the model run 
with variable total capacity and early onset of maturation in the Lake Ontario sub-stock 
(Figure 4.1).  In the variable capacity run with late maturation (Figure 4.2), parameters 
associated with silver eel production in Lake Ontario are more important and these fisheries 
drop out of the top ten influences. This presumably reflects limits on total production by early 
life history mortality at very high capacities. 

Mortality on Resident Eels 

Although the F parameter is designated as fishing mortality in the model, it is more 
appropriate to think of it as a generic increase in mortality above historical natural mortality 
related to any of several factors.  Because data on fishing rates are imprecise, and information 
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on other sources of mortality such as chemical contaminants or exotic diseases such as 
swimbladder nematode infestation is entirely lacking, a single general parameter is all that can 
realistically be accommodated. 

As indicated in Figures 4.3 and 4.4 and also in Figures 4.5 and 4.6, increased mortality on 
resident eels through the fishing parameter has a strong influence on Lake Ontario production 
of eggs and silver eels.  While this stems in part from the use of 0 as the lower bound on the 
simulation range, this is also true for other parameters subject to management, on the 
grounds that elimination of fishing, dams, or habitat impairment are at least hypothetically 
management options.  The significance of F is undoubtedly its repeated application over the 
life of each age class.  The strength of its effect on egg production relative to mortality on 
silver eels, in spite the fact that silver eel mortality acts immediately on the egg production 
parameter, is consistent with concerns raised from several sources that the resident eel 
fishery’s repeated effect on individual age classes can yield substantial effects (Richkus and 
Whalen, 1999; ASMFC, 1999). 

That the effect of F on total egg production in model implementations with early onset of 
maturation (Figures 4.3 and 4.5) is greater than on those with late maturation (Figures 4.4 
and 4.6) presumably reflects the reduction in proportion of overall silver eel production from 
the Lake Ontario sub-stock resulting from additional years of natural mortality acting on 
recruitment to the sub-stock. 

The mechanism by which eel maturation is triggered is obscure and the methods employed in 
these models to simulate the process are simplistic.  Simulation results produce plausible 
distributions of mature eel abundances (see Appendix B), but the possible interactions of age, 
size, fecundity, and gamete viability discussed in other sections argue strongly for more 
detailed studies of this question. 

Outmigration 

Effects on silver eels are modelled with more complexity than other stages.  Where effects on 
the production parameter are modelled as a single effect acting through F for younger stages, 
silver eel effects include number of dams, dam passage mortality rate, fishing, and natural 
survivorship.  The natural survivorship parameter is, in technical terms, a dodge to permit use 
of fecundity as the production parameter, but compartmentalization of additional effects at 
the silver eel stage serves to mask the combined importance of total mortality at this stage.  
Nonetheless, passage survival, dam number, and natural survivorship are among the most 
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sensitive variables for egg production from the Lake Ontario sub-stock, generally superceded 
by only production parameters and the fishery on resident eels in the Lake Ontario sub-stock.  
Infestations of swimbladder nematode and mobilization of fat-soluble contaminants along 
with fat reserves and other tissues during the migration may be sources of additional 
mortality. As with other stages, these may be viewed as contributing to the silver eel fishing 
mortality parameter.  The silver eel fishing mortality parameter does not figure as a primary 
correlate of either total egg production or of Lake Ontario egg production in any of the four 
cases, although like fishing mortality on yellow eels, it has a lower bound of 0. 

Summary of Model Finding 

The ranking, from greatest to least influence, of the top five plausible factors for the entire 
population in terms of model sensitivity would (with some room for argument) be: 

• oceanic effects; 
• cumulative effects of fishing (and other anthropogenic mortality) on resident eels; 
• dam passage effects; 
• habitat effects (blockage or impedance of upstream passage and/or habitat 

destruction) throughout the entire range; and 
• habitat effects in the Lake Ontario/ upper St. Lawrence sub-stock. 

The caveat that must be attached to this ranking concerns the previously stated fact that the 
degree of uncertainty within the oceanic effects component of the model is part of what has 
driven it to the top of the list. 

The ranking, from greatest to least influence, of plausible factors for the Lake Ontario / upper 
St. Lawrence River contribution to total reproduction, in terms of model sensitivity would 
(with some room for argument) be: 

• cumulative effects of fishing (and other anthropogenic mortality) on resident eels; 
• oceanic effects; 
• dam passage effects; 
• habitat effects in the Lake Ontario/upper St. Lawrence sub-stock; and 
• habitat effects throughout the entire range. 

These rankings could change substantially if the precision and accuracy of estimates were 
improved. 
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Data Gaps and Research Priorities 

The most obvious gap in knowledge is the life history of oceanic stages.  Although the model 
output for both total eel and egg production and production in the LO-SLR sub-stock is 
sensitive to assumptions about production in the oceanic environment, virtually nothing is 
known about what habitats, if any, are critical to spawning success, hatching, or recruitment 
to the leptocephalus and glass eel stages.  Understanding at least the basics of these issues 
will lead to a significantly better understanding of how other factors contribute to distribution 
and abundance of American eels throughout their range.  Indeed, these results indicate that a 
proper understanding of overall trends will not be possible without some new insights into 
oceanic life history and environmental influences, and that such research should be a priority.  
Intensive (and expensive) field research is the only option for such study. 

The basic ecology of sub-stocks is also poorly understood.  These animals do not exhibit 
simple population dynamics based on straightforward equations.  Standard fishery production 
models are wholly inadequate for their study.  Improvement in data regarding the age 
structure, growth, survivorship, maturation, and fecundity of eels from all habitat components 
is required.  At present, most studies have been fragmentary. Although some recent work has 
been more focused on answering fundamental life history questions, more such work is 
needed.  Structured research programs investigating basic biology and ecology of American 
eels in representative habitats within sub-stocks are clearly required.  Juvenile natural 
mortality schedules and the nature of density dependence are critical components of any 
analytical framework through which effects might fruitfully be evaluated, and they are not 
adequately understood. 

Most fishing mortality data for North American eels stocks do not include dependable 
estimates of effort and are therefore inadequate as an index of abundance, or measure of 
fishing rate. Standardized collection of fishing effort data throughout the range of American 
eels would help elucidate both stock abundance and fishing mortality.  As mentioned 
previously, fishing mortality is one component of the cumulative anthropogenic mortality 
potentially inflicted on immature, resident eels. The effects of other contributing factors such 
as microcontaminant toxicity and introduced pathogens are not readily tractable to field study 
and will probably require laboratory study. 

The fact that dam number and passage mortality both figure in egg production results, even 
when treated as separate variables, is an indication that turbine mortality is important.  The 
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sensitivity analyses are supported by results from deterministic runs in which turbine mortality 
through two dams with seventy-five percent survivorship had a comparable effect on the base 
case egg production to an annual silver and yellow eel fishing mortality of nine percent.  The 
actual effect of turbine-induced mortality, both immediate and latent, on silver eels needs to 
be quantified and measures of the proportion of silver eel production affected by downstream 
passage effects are needed.   Tagging studies would seem to be the most plausible option for 
such work.  Quantification of the efficacy of downstream passage mitigation measures would 
be a corollary to any such research. 

Accurate estimates of habitat capacity for eel production is also needed.  Some good work 
has been done to identify obstacles to migration, but the implications are poorly understood.  
The apparent importance of density dependence in eel life history means that the capacity of 
posited sub-stocks – those used in this model or others agreed upon by the research 
community – needs clarification.  Any effort to comprehend the effect of channel obstructions 
and habitat modification will require some estimation of historical habitat capacity.  This will 
require a combination of historical research and theoretical extrapolation.   

A related issue is the question of how obstacles affect upstream passage of early life stage 
eels.  That smaller dams can be passed is known, but whether or to what extent the upstream 
recruitment of eels is affected by such structures is not.  Such studies would be relatively 
inexpensive and straightforward if structures can be found with readily manipulated stop log 
structures or other such mechanisms for controlling height.  Quantification of the efficacy of 
upstream passage devices would be a corollary to any such research. 

Potential for Mitigation 

Although the model makes clear that conclusions about the potential for mitigative measures 
must be treated with caution, it is possible to make some general comments about the likely 
effect of specific measures, as indicated by the model.  The model is sensitive to the effects of 
sources of mortality characterized in the model as fishing mortality.  A substantial reduction 
in such mortality in the LO-SLR sub-stock would have a reasonable expectation of improving 
egg production both from the sub-stock and in total. 

The model is relatively insensitive to the effects of silver eel mortality, although the natural 
survivorship term for silvers is among the most sensitive for LO-SLR egg production.  
Because the real natural survivorship of silver eels during migration is not known, and 
because model sensitivity to the yellow eel fishing mortality parameter in LO-SLR is so much 
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greater than sensitivity to silver eel fishing mortality, it is unlikely that elimination of silver eel 
fisheries would confer the same benefits as the same measures directed on yellow eel 
fisheries. 

Substantial (close to 100%) removal of barriers to migration, or the provision of high 
efficiency upstream passage facilities, can also be expected to confer substantial benefits on 
egg production from the LO-SLR sub-stock.  Upstream passage was treated as an either/or 
proposition in the model.  In such an instance, which approximates some hypotheses related 
to lock function in the seaway, removal of the obstacle would  be a basis for all mitigative 
measures.  Without efficient upstream passage, eliminating the fishery or other sources of 
mortality would be moot. 

Mitigation of downstream passage could have substantial benefits to egg production from the 
LO-SLR sub-stock.  All silver eels above Saunders dam must pass through a minimum of two 
dams (not the maximum of two posited in the sensitivity runs) so it has especially strong 
implications for that component of the sub-stock.  Depending on assumptions about the 
nature and extent of resident eel habitat above that barrier, this alone could have substantial 
implications for the total sub-stock, comparable to the effect of the fishery. 

General Conclusions 

Any effort to provide a formal framework for decisions regarding American eel management 
in the Saint Lawrence and Lake Ontario is fraught with difficulties ranging from poor data to 
the highly unusual life history of the subject species.  Modeling of the stock and its 
interactions with the rest of the American eel population would be helpful in structuring 
debates about the state of both the stock and the total eel population. 

The modeling exercise we have undertaken is well short of what would be needed to 
conclude specifics about sub-stock abundance.  It is, we believe, a first step toward 
structuring discussion of actual relationships in the eel life-history, gaps in understanding, and 
the likely effects of posited effects. 

Doubtless there are many elements of the model that could have been estimated more finely if 
certain assumptions were made.  More resources would have permitted use of statistical 
distributions for trials with fewer implications for the sensitivity of some parameters.  
However, certain patterns do emerge.  It appears that what happens in the oceanic 
environment is of material importance to resolving questions about recruitment to coastal and 
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freshwater habitat.  Fisheries on younger, migratory ages and mature fish appear less 
important than those on resident immature eels.  Habitat exclusion and passage mortality can 
make a difference.  Taken together, the effects can be very substantial. 

Given the well-documented nature of the dramatic decline in abundance observed in the LO-
SLR sub-stock, it would be advisable to immediately initiate research/monitoring efforts that 
would help to fill the more critical data gaps as determined by this analysis.  These are: 

• fishing and natural mortality rates for resident immature eels in a range of 
representative areas, e.g., eastern Lake Ontario, Lac St. Francis, Lac St. Pierre; 

• accurate estimates of historical and current habitat capacity for resident immature 
eels, and the effects of dams on density in upstream habitats; and 

• accurate estimates of downstream migrant (adult) mortality including natural 
mortality, direct and latent turbine passage mortality, and mortality in the Quebec 
silver eel fishery. 

These data would be especially useful in the refinement of the model and could considerably 
reduce uncertainty regarding the management of the LO-SLR sub-stock. 

Finally, we re-emphasize that this effort is intended as a first and tentative step toward an 
adaptive management approach to dealing with the uncertainties that complicate American 
eel management.  It is not intended to form a basis for management of the sub-stock, but as a 
tool to guide investigations that might improve management and help to preserve this 
valuable and unique resource. 
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